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ABSTRACT 

An agglomeration multigrid strategy is developed and implemented for the solution of 

three-dimensional steady viscous flows. The method enables convergence acceleration with 

minimal additional memory overheads, and is completely automated, in that it can deal 

with grids of arbitrary construction. The multigrid technique is validated by comparing 

the delivered convergence rates with those obtained by a previously developed overset-mesh 

multigrid approach, and by demonstrating grid independent convergence rates for aerody- 

namic problems on very large grids. Prospects for further increases in multigrid efficiency 

for high-Reynolds number viscous flows on highly stretched meshes are discussed. 

This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. 



1.  INTRODUCTION 

With unstructured mesh techniques having proved their usefulness for two and three- 
dimensional steady inviscid flow solutions, the push is now on for realistic and practical three- 
dimensional unstructured mesh viscous flow solvers. While useful inviscid calculations can be 
performed in three-dimensions using several hundred thousand grid points, the situation is quite 
different for viscous flow cases. Judging from current viscous block-structured and overset- 
structured grid calculations, the accurate aerodynamic simulation of isolated aircraft com- 
ponents can be expected to require the use of several million grid points [1], whereas accurate 
computations for entire vehicles can be expected to require tens of millions of grid points [2]. 
Thus, explicit time-stepping is clearly not feasible, and the development and implementation of 
efficient, robust, and automated algorithms are essential if unstructured mesh techniques are to 
be employed for such cases. The task of developing an efficient solver is further complicated 
by the stiffness associated with the extreme grid stretching which is generally required for 
resolving high-Reynolds number flows. 

Implicit solution techniques have been demonstrated for accelerating convergence to 
steady-state of unstructured grid solvers for both two and three-dimensional problems [3,4,5,6]. 
While these methods results in substantial reductions in CPU time for a given solution, they 
most often greatly increase the amount of required memory. In fact, simply storing the jacobi- 
ans of the discrete equations requires 2 to 3 times more memory than an explicit scheme. 
Matrix-free implicit methods provide a low-storage alternative [7], however the effectiveness of 
such schemes is limited by the lack of good matrix-free preconditioned. 

Multigrid techniques provide an alternative for increasing solution efficiency in terms of 
CPU time, while incurring minimal additional memory overheads. For unstructured meshes, 
various multigrid strategies have been demonstrated successfully. The fully-nested multigrid 
approach begins with a coarse unstructured mesh, which is repeatedly subdivided (possibly 
adaptively) in order to obtain the new finer levels [8,9]. Since the coarse and fine grid cells 
are nested, the inter-grid transfer operators are simple to evaluate. However, the fine mesh 
construction is constrained by the structure of the coarse mesh, which may have adverse impli- 
cations on the fine grid quality, and thus solution accuracy. In another approach, coarse and 
fine mesh levels are generated independently from one another, and the interpolation patterns 
between these non-nested meshes are predetermined in a pre-processing operation 
[10,11,12,13]. A more automated variant of this approach involves generating coarse mesh 
levels from a given fine mesh level by removing a subset of the fine grid points, and retriangu- 
lating the remaining points [14]. 

Although the above methods have all been demonstrated for practical problems, there are 
certain drawbacks associated with each one of them. The fully nested approach requires a 
strong coupling between the mesh generation and multigrid strategies, and does not permit the 
use of a predetermined fine grid. The overset-grid method places unnecessary burden on the 
user by requiring the generation of multiple meshes for a single solution. The automation of 
this procedure does not fully resolve the issue, since generation of coarse mesh levels (manual 
or automated) can become extremely difficult for complex geometries which exhibit features 
finer than the desired grid resolution. 

Agglomeration multigrid methods [15,16,17] and algebraic multigrid methods [18] can 
overcome such problems. In agglomeration multigrid, coarse mesh levels are formed by fusing 
together or agglomerating neighboring cells in a given fine grid to obtain a smaller number of 
larger and more complex polyhedral cells.   The degree of these agglomerated polyhedra 



increases on each coarser mesh level, but they always conform exactly to the original fine grid 
boundaries. Algebraic multigrid methods obviate the need for considering coarse mesh levels 
altogether. Instead, they operate directly at the discrete equation level, employing multiple 
smaller sets of discrete equations to aid in the solution of the original discrete equations. 

The agglomeration multigrid strategy is somewhat dual in nature, in that it can be inter- 
preted either as a geometric approach, or as an algebraic approach. In the geometric interpreta- 
tion, the coarse level discrete equations are obtained by discretizing the original governing 
equations on the coarse polyhedral cells. For the Euler equations, this is easily accomplished 
using a finite-volume analysis, with the control volume taken as the polyhedral element 
[15,16]. For the viscous terms, a least-squares technique can be used to construct the required 
velocity gradients. In fact, this implementation of agglomeration multigrid has an exact analo- 
gue in the automated non-nested mesh approach [14]. If we consider each agglomerated cell to 
be identified by its seed point (i.e. the starting fine grid vertex used to initiate the agglomera- 
tion of the cells), then these seed points may be thought of as common to both the fine and 
coarse levels, while all other fine grid vertices may be thought of as deleted by the agglomera- 
tion procedure in the construction of the next coarser level. There then exists a particular tri- 
angulation of these coarse grid points which recovers the discretization employed in the 
agglomeration algorithm. The essential problem with this analogy is that, in general, the tri- 
angulation may not be valid, i.e. it may contain negative area cells, and may not respect the 
boundary of the domain. 

In the algebraic interpretation of agglomeration, the coarse grid equations are constructed 
algebraically rather than by geometric rediscretization, using techniques similar to those 
developed for algebraic multigrid strategies. This is the approach pursued in this work. The 
basic premise is that convergence acceleration techniques should not be bound by geometry 
based constraints, and the removal of the influence of geometry from the multigrid process 
should lead to a more robust strategy. Under certain conditions, for the inviscid terms, this 
approach can be shown to be equivalent to the rediscretization technique. However, this is not 
the case for the viscous terms. Furthermore, the algebraic philosophy carries with it implica- 
tions for other details of implementation, such as boundary conditions. In fact, under certain 
conditions, the agglomeration multigrid approach and the algebraic approach can be shown to 
be identical. 

Agglomeration multigrid was originally devised by Lallemand and Dervieux [15] for ver- 
tex schemes, and by Smith [16] for cell-centered schemes. Agglomeration for diffusion prob- 
lems has been investigated by Koobus et al. [19] as well as by the present authors in a previ- 
ous paper [20]. The algebraic interpretation of agglomeration multigrid has been described in 
[17], where the technique was applied to large three-dimensional inviscid problems. In [20], 
further comparisons between algebraic and agglomeration multigrid methods were performed, 
and the results were used to construct a two-dimensional Navier-Stokes solver. This paper 
represents the extension of the results from [20] to large three-dimensional problems, and the 
comparison of this scheme with a previously developed overset-grid multigrid technique [13]. 

2.  SINGLE GRID SOLVER 

The fine grid discretization is identical to that described for the non-nested multigrid 
approach in [13]. The fine grid equations are obtained by discretizing the Reynolds-averaged 
Navier-Stokes equations using a Galerkin finite-element approach. Artificial dissipation is 
added in the form of an undivided Laplacian and biharmonic operator, in order to damp out 



strong oscillations in regions near shocks, and to maintain stability in smooth regions of flow, 
respectively. In order to reduce memory overheads, both the inviscid and the viscous terms are 
assembled using an edge-based data-structure. For the inviscid terms, this requires the storage 
of the x, y, and z projected areas of the dual face associated with the edge (three coefficients), 
while for the viscous terms, this requires the storage of six edge coefficients (formally nine 
coefficients, which are reduced to six through symmetry properties) [10,13,21]. While the use 
of a single edge-based data-structure is instrumental in lowering memory overheads, this also 
enables a straight-forward implementation of the agglomeration multigrid algorithm, using the 
same data-structure on all grid levels. The discrete fine-grid equations are integrated in time to 
obtain the steady-state solution using a multi-stage time-stepping scheme designed to rapidly 
damp out high frequency errors, for multigrid effectiveness. Convergence is accelerated using 
local time-stepping, residual averaging, and the agglomeration multigrid strategy. On the coarse 
grid levels, only a Laplacian dissipation operator is employed, enabling the use of nearest- 
neighbor stencils. 

Turbulence closure of the Reynolds-averaged Navier-Stokes equations is achieved using 
the single field equation turbulence model of Spalart and Allmaras [22]. This equation is 
discretized using first-order upwinding for the convective terms, and second-order Galerkin 
finite-elements for the diffusion and source terms. The residuals are assembled using the 
edge-based data-structure, and advanced in time using a Jacobi iteration. Convergence is 
accelerated using the agglomeration multigrid algorithm. The turbulence equation is thus 
solved simultaneously but decoupled from the flow equations. 

3.  MULTIGRID STRATEGY 

The central idea of agglomeration multigrid is to form coarse level meshes by grouping 
together neighboring fine level control volumes. For vertex-based schemes, the fine grid con- 
trol volumes are defined by the centroid dual mesh, as shown in Figure 1 for the two- 
dimensional case. The coarser agglomerated mesh levels consist of a smaller number of larger 
and more complex polyhedral control volumes. Originally, the coarse grid equations for 
agglomeration multigrid were obtained by rediscretizing the governing equations on the coarse 
grid levels using a finite-volume approach [15,16,17]. This procedure is straight forward for 
the Euler equations. However, for the viscous terms of the Navier-Stokes equations (or even 
for Laplace's equation), rediscretization on complex polygonal control-volumes is non trivial. 
Although rediscretization is possible for such terms (using for example least-squares gradient 
construction), an alternative is to construct the coarse grid equations algebraically, from the fine 
grid discrete equations. This technique, which forms the basis for algebraic multigrid methods, 
states that, given a restriction operator R, a prolongation operator P, and the fine grid operator 
A, the sequence of operators 

Aram=RAP (1) 

yields a valid coarse grid operator Acoarse. This is often referred to as a Galerkin coarse grid 
operator construction, since it can be shown that if A minimizes a functional over a set of 
functions spanned by the fine grid, then RAP minimizes the same functional over the smaller 
set of functions spanned on the coarser level [18]. 

In the case of the Euler equations, if the restriction operator R and the prolongation 
operator P are both taken as injection, then the Galerkin coarse grid operator construction and 
the   finite-volume   rediscretization   coarse   grid   operator   construction   become   equivalent 



[17,19,20]. Therefore, a unifying approach for the Navier-Stokes equations consists of 
employing the Galerkin construction of equation (1) for both the inviscid and viscous terms. 
The difficulty with this approach is that when simple injection is employed for the restriction 
and prolongation operators, the resulting coarse grid discrete equations are not consistent with 
the governing equations (i.e. they do not approximate the original Navier-Stokes equations in 
the limit of small mesh size). This inconsistency arises only for the viscous terms and is due 
to the simple form of the restriction and prolongation operators. 

There are two possibilities for improving the accuracy of the coarse grid operator.   The 
first is to replace equation (1) by 

A = A + A 
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where n represents the grid level. This heuristic fix applied to the viscous terms was derived in 
[19,20], by examining a simple one-dimensional diffusion problem. It restores the consistency 
of the equations for the one-dimensional case without changing the operator stencil. The other 
approach is to employ more accurate forms for the restriction and prolongation operators in 
equation (1). In [20], various forms of the prolongation, restriction and coarse grid operators 
were examined for a simple two-dimensional Laplace's equation. While the more accurate 
forms resulted in increased speed of convergence of the multigrid scheme, the complexity of 
the operators was greatly increased, reducing the overall benefit. A desirable feature of the 
Galerkin construction using injection for the restriction and prolongation operators, is that for 
fine grid operators based on nearest-neighbor stencils, the resulting coarse grid operator also 
results in a nearest-neighbor stencil, thus limiting the complexity of the coarse grid operator, 
and preserving properties of the original operator such as diagonal dominance and symmetry. 
Hence, in this work, the form of equation (2) is employed for constructing the coarse grid 
equations. 

As mentioned in the introduction, agglomeration multigrid can be interpreted either as a 
geometric or an algebraic technique. Our reliance on equations (1) and (2) for the construction 
of the coarse grid discrete equations indicates our preference of the algebraic interpretation. In 
fact, when simple injection is employed for the restriction and prolongation operators, the 
Galerkin coarse grid operator construction can be interpreted as an equation summing tech- 
nique. For each agglomerated cell, the associated coarse grid equation can be obtained simply 
by summing the constituent fine grid equations, rescaling the viscous terms as per equation (2), 
and replacing the fine grid variables with the corresponding coarse grid variables. Thus, the 
solution of the coarse grid equations reduces to solving a smaller set of summed fine grid 
equations. Since the fine grid equations have originally been assembled in a symmetric edge- 
based format, the construction of the coarse grid discrete equations is particularly simple. 
When a new agglomerated cell is formed, all edge coefficients associated with the edges inte- 
rior to the cell cancel out due to symmetry, and those associated with the outer edges common 
to a neighboring cell are simply summed, as depicted in Figure 2, for the two-dimensional 
case. 

The coarse grid equations are thus directly inferred from the fine grid equations with no 
dependence on the geometry of the coarse grids.   This general philosophy is applied to all 



details of the multigrid implementation. For example, the boundary conditions on the coarse 
grids are not derived from the coarse grid geometry, but are inferred by the constituent fine 
grid equations of each coarse grid cell. This results in a natural treatment of coarse grid cells 
which overlap various boundary condition types. The removal of the influence of geometry 
from the multigrid formulation results in a more robust algorithm which is unaffected by 
geometry resolution (and even changes in geometry topology) on coarse grids. 

4.  AGGLOMERATION STRATEGY 

The algorithm used to construct the coarse agglomerated levels is a graph-based technique 
which seeks to remove or agglomerate a subset of the fine grid points, thus resulting in a 
smaller set of points which constitute the coarse grid. There is a duality here between 
agglomeration and point removal. If each agglomerated cell is considered to be composed of 
its seed point (i.e. the point at which the agglomeration process was initiated) and its 
agglomerated points, then the seed point corresponds to a preserved coarse grid point and the 
agglomerated points correspond to the deleted fine grid points. The main difference is that, 
whereas the point removal process simply results in a new set of points, with no implied con- 
nectivity, the agglomeration process also results in a new coarse grid graph, i.e. that obtained 
by drawing an edge between every pair of neighboring coarse grid cells. 

Our original algorithm was based on an unweighted graph, where all edges were treated 
equally. The principle is to construct coarse grid graphs which are maximal independent sets 
of the previous finer grid graph. A subset of the vertices of a graph is termed an 
independent set if no two vertices in the set are adjacent. An independent set is maximal if any 
vertex not in the set is dominated by (adjacent to) at least one vertex in it. The algorithm is 
detailed below: 

1. Pick a starting vertex on a surface element. 

2. Agglomerate control volumes associated with its neighboring vertices which are not 
already agglomerated. 

3. Define a front as comprised of the exterior faces of the agglomerated control volumes. 
Place the exposed edges (duals to the exterior faces) in a queue. 

4. Pick the new starting vertex as the unprocessed vertex incident to a new starting edge 
which is chosen from the following choices given by order of priority: 

An edge on the front that is on the solid wall. 
An edge on the solid wall. 
An edge on the front that is on the far field boundary. 
An edge on the far field boundary. 
The first edge in the queue. 

5. Go to Step 2 until the control volumes for all vertices have been agglomerated. 

For anisotropic problems, such as high-Reynolds number viscous flows, directional coarsening 
strategies are known to be beneficial [23]. Initial attempts at modifying the coarsening strategy 
based on the coarse grid cell aspect ratios has met with little success [17]. The present 
approach is to modify the algorithm detailed above based on a weighted graph. Each edge of 
the graph is associated a weight, and coarsening is performed preferentially in the direction of 
the strongest graph weights.   The graph weights should be based on a quantity which reflects 



the strength of coupling between neighboring discrete equations, such as the edge coefficient of 
the discrete equations associated with either vertex on both ends of the edge. For highly direc- 
tional problems, such techniques can result in semi-coarsening strategies, and have been shown 
to result in very favorable convergence rates [18,24]. The use of weighted graphs as opposed 
to cell aspect ratios to guide the coarsening process is another example of the algebraic rather 
than geometric philosophy adopted throughout the multigrid implementation. 

There are several problems which arise when applying these techniques to three dimen- 
sional Navier-Stokes problems. The first reflects the fact that the governing equations consist 
of a system of equations, rather than a scalar equation, and thus the use of a simple discrete 
edge coefficient as a graph weight may not be appropriate. The second problem relates to the 
complexity of the coarse grids. In highly anisotropic regions, a 2:1 coarsening is generally 
produced by the weighted graph techniques, while in the isotropic regions, an 8:1 coarsening 
results. When the process is applied recursively, the isotropic regions of the mesh are coar- 
sened much faster than the non-isotropic regions, thus resulting in large disparities in neighbor- 
ing cell sizes, which can reduce the effectiveness of the coarse grid operator. A secondary 
effect is to increase the complexity of the coarse grids (as compared to an unweighted graph 
algorithm), thus increasing the cost of a multigrid cycle, and obviating the possibility of using 
W-cycles. 

The approach taken in this work is to apply the weighted graph techniques in a weak 
manner. The weight associated with each edge is presently based on the inverse of the edge 
length. This provides a crude but consistent measure of the degree of couping between neigh- 
boring grid points. The unweighted graph algorithm described above is modified by only 
agglomerating neighboring vertices for which the graph weight is greater than a times the aver- 
age weight at that point. A value of a = 0 reproduces the unweighted algorithm, while a value 
of a = 1 corresponds to the fully weighted algorithm. In this work the value a = 0.001 has 
been used exclusively. This has the effect of modifying the original unweighted algorithm 
only in regions of extreme grid stretching such as near the airfoil surfaces. This results in 
more uniform coarse grids, while limiting their complexity. The problems described in the 
previous paragraph must be overcome before the beneficial effects of directional coarsening can 
be fully exploited. 

The agglomeration process is very efficient and runs in time linearly proportional to the 
number of edges in the mesh. Given a list of edges in the mesh, the program recursively con- 
structs the specified number of coarser levels. For example, the construction of 5 coarse levels 
for the grid employed in the last example of the results section (2.3 million points and 16 mil- 
lion edges) required 1600 cpu seconds on a single CRAY C90 processor. By comparison, the 
extraction of the edges from the original description of the mesh requires 1800 cpu seconds, 
and a multigrid time-step requires 215 seconds. Neither the edge extraction nor the agglomera- 
tion procedure make use of vectorization, and their performance relative to the flow solver on a 
scalar machine can be expected to be much faster. The main reason for running the 
agglomeration procedure on the CRAY-C90 is the amount of memory required. The 
agglomeration procedure currently requires approximately the same amount of memory as the 
flow solver. This can be substantially reduced in the future, simply by better streamlining the 
code, and by deferring the computation of the coarse grid edge coefficients, given the 
agglomeration graph, to the flow solver module. 



5.  RESULTS 

The present algorithm was used to solve several turbulent flow test cases of aerodynamic 
interest which were chosen to: 

1. demonstrate the relative efficiency of the current agglomeration strategy compared to a 
previously developed overset-mesh  multigrid strategy, 

2. illustrate the flexibility of the current methodology in dealing with meshes of arbitrary 
construction over complex geometries 

3. and demonstrate the capability of solving very large problems with acceptable overheads 
and minimal degradation in convergence efficiency. 

5.1. Single-Segment wing 

The first test case involves the transonic flow over a wing of aspect ratio 2 with no 
sweep or spanwise variation. The wing section (independent of span location) is an RAE 2822 
airfoil. The three-dimensional grid employed for computing the flow over this wing geometry 
contains 1.04 million points and 6 million tetrahedra, and is displayed in Figure 3. The mesh is 
formed by first constructing a two-dimensional unstructured grid about an RAE 2822 airfoil, 
using the method described in [25]. The two-dimensional mesh is then stacked in the spanwise 
direction, thus forming a mesh of spanwise prisms. This prismatic mesh is then converted into 
a tetrahedral mesh by dividing each prism into three tetrahedra. The resulting geometry con- 
sists of a wing with a symmetry plane at both ends of the wing. There is thus no wing tip 
present and no spanwise variation whatsoever. This can be thought of as a typical wing-in- 
wind-tunnel two-dimensional test. The normal mesh spacing at the wing surface is 10~5 

chords.  A total of 5 coarse agglomerated levels were used in the multigrid sequence. 

The freestream Mach number for this case is 0.73, the incidence is 2.79 degrees, and the 
Reynolds number is 6.5 million. The solution is depicted qualitatively in Figure 4, as a plot of 
density contours on the surface of the wing and symmetry walls. The lack of any spanwise 
variation of the contours on the wing indicates the presence of purely two-dimensional flow. 
The flow is transonic and a normal shock is observed slightly aft of the mid chord location. 
Figure 5 provides a more quantitative picture of this solution. The computed surface pressure 
at the mid-span location is compared with experimental data as well as with the computed 
results of the two-dimensional code on an equivalent station grid of 31,571 points. Both the 
two and three-dimensional codes tend to underpredict the lift compared with the experimental 
data, a fact which is attributed to the turbulence model employed. For example, the same 
two-dimensional code achieves a lift value some 10% higher using the Baldwin-Lomax model. 
However, the two and three-dimensional flow solutions agree very well with each other. The 
three-dimensional solution is slightly more diffusive than the two-dimensional solution, which 
is attributed to the presence of extra spanwise dissipation, which is non-zero even in a two- 
dimensional flow, due to the presence of diagonal edges in between neighboring spanwise sta- 
tions. 

The convergence of the agglomeration multigrid algorithm for this case is shown in Fig- 
ure 6, where it is compared with the convergence rate obtained on the same problem by the 
overset-mesh multigrid algorithm (developed previously in reference [13]), and with a well 
validated two-dimensional multigrid code using the overset mesh strategy [26], on the 
equivalent two-dimensional section grid. For this particular case, the agglomeration multigrid 
algorithm could not be initiated with a constant initial flow field on the finest grid.  Since grid 



sequencing using the agglomerated multigrid levels has not been implemented, a small number 
of single grid cycles (10 cycles in this example) were employed to precondition the initial flow 
field prior to multigrid time-stepping. The convergence rate of the agglomeration code is seen 
to be faster than the equivalent overset-mesh multigrid convergence rate, but slightly slower 
than that produced by the two-dimensional code. A slight slowdown on the asymptotic rate is 
observed around 300 cycles. In Figure 7, the present multigrid convergence rate is compared 
with the convergence rate of the same code without multigrid acceleration. The multigrid run 
reduces the average flow-field density residuals by 5.5 orders of magnitude in 350 cycles, 
while the single grid run barely achieves a reduction of two orders of magnitude in 600 cycles. 
This is also reflected in the values of the lift coefficient, which approaches its final value much 
more rapidly in the multigrid case. 

The agglomeration multigrid code required 82 seconds of CPU time per multigrid cycle, 
on a single CRAY-C90 processor, while the overset-mesh multigrid code required 75 seconds 
per multigrid cycle, and the single grid code 38 seconds per cycle. Thus the two multigrid 
methods are nearly equivalent in terms of overall solution efficiency, and both provide an order 
of magnitude increase in efficiency over the single grid approach. This run required a total of 
185 Mwords of memory, (as opposed to 177 Mwords for the overset-mesh code), which 
includes all required coarse grid storage, and translates to approximately 180 words per fine 
grid vertex. This case (350 multigrid cycles) required a total of 8 hours of CPU time on the 
CRAY-C90 using a single processor. 

5.2.  Three-Element High-Lift Wing 

The next test case consists of flow over a high-lift wing configuration with a slat and a 
single slotted flap. The wing has an aspect ratio of 2 with no sweep or spanwise variation. 
The wing section (independent of span location) is a Douglas three-element airfoil, which has 
been extensively tested both numerically and experimentally [26]. The three-dimensional fine 
grid employed for computing the flow over this wing geometry is displayed in Figure 8. This 
grid is formed by stacking a set of two-dimensional grids in the spanwise direction, as 
described in the previous section. The final grid contains 1.84 million points and 10.6 million 
tetrahedra. The normal spacing at the wall is 10~6 airfoil chords, for each airfoil element. A 
total of six mesh levels were employed in the multigrid procedure. The freestream Mach 
number is 0.2, the incidence is 16.21 degrees, and the Reynolds number is 9 million, for this 
case. The flow is assumed to be fully turbulent, thus no transition points are specified. As in 
the previous case, the flow is entirely two-dimensional, enabling the comparison of the three- 
dimensional solution with a well validated two-dimensional solver. 

The computed Mach number contours on the wall, and density contours on the airfoil 
surfaces are depicted in Figure 9. A more quantitative description of the solution is given in 
Figure 10, where the three-dimensional computed surface pressure coefficients are compared 
with experimental values, and with the computed values obtained using the two-dimensional 
code [26]. Good agreement is observed between both computations and the experimental 
values. The convergence rate of the agglomeration multigrid method is compared with that of 
the overset-mesh multigrid approach of [13], and that of the two-dimensional code using the 
overset-mesh multigrid technique, in Figure 11. The agglomeration multigrid approach is seen 
to converge at almost the same rate as the overset-mesh multigrid method. Both achieve ident- 
ical asymptotic rates, although the non-nested multigrid approach achieves a slightly more 
rapid  initial residual  reduction.    The agglomeration multigrid method achieves a residual 



reduction of 5 orders of magnitude over 400 multigrid cycles, for an average residual reduction 
rate of 0.973. Surprisingly, both three-dimensional codes converge slightly more rapidly than 
the two-dimensional code. For this case, the agglomeration multigrid solver required a total of 
340 Mwords of memory, and 210 cpu seconds per cycle. The entire calculation was per- 
formed in four restart phases of 100 cycles. Each batch job of 100 multigrid cycles could be 
executed in approximately 40 minutes of wall-clock time, using all 16 processors of the 
CRAY-C90, in a time-sharing environment, during which 60% of the machine was allocated to 
this specific job. 

5.3. Partial Span-Flap 

The final test case involves the solution of a truly three-dimensional flow field. The 
geometry consists of an unswept wing of aspect ratio 2, with a partial-span single-slotted flap, 
which extends up to mid span. The flap defection for this case is 30 degrees, and the gap and 
overlap are 0.023 chords and -0.0039 chords respectively. This geometry is currently undergo- 
ing extensive testing in the 7X10 wind-tunnel at NASA Ames Research Center, and should 
provide good experimental data for CFD validation in the near future. The geometry definition 
v/as kindly provided by D. Mathias, who has also performed overset structured-grid calcula- 
tions for this case [27]. An unstructured grid with high stretching near the wing surfaces was 
generated for this configuration by S. Pirzadeh, using his advancing layers method [28]. The 
initial mesh contained a total of 300,000 points, and 1.7 million cells. The normal spacing at 
the airfoil surfaces is 10"5 chords, and the wind tunnel-walls are modeled unviscidly. This 
mesh is depicted in Figure 12, along with the coarse agglomerated meshes employed in the 
multigrid procedure. While the flow was computed on this initial mesh using these 
agglomerated meshes, a finer mesh was also constructed and a new set of agglomerated meshes 
were generated for the fine grid computation. This finer mesh, which is depicted in Figure 13, 
contains 2.3 million points and 13.6 million cells and was derived from the initial mesh by a 
single pass of a simple global h-refinement technique. The resulting fine mesh contains a nor- 
mal wall spacing of 5 X 10"6 chords over the entire wing surface. 

The freestream Mach number for this case is 0.2, the incidence is 10 degrees, and the 
Reynolds number is 2 million which, for this particular flap rigging, corresponds to an 
approach condition. The fine grid solution is illustrated qualitatively in Figure 14, as a set of 
computed Mach contours on the wind-tunnel wall, and density contours on the wing surface. 
At the time of writing, no experimental data was available for comparison, and a full accuracy 
validation must be deferred to future work. Nevertheless, this case can be used to demonstrate 
the effectiveness of the multigrid approach in solving fully three-dimensional flows on very 
large grids. 

The convergence rate of the agglomeration multigrid algorithm operating on the fine 
mesh, using six mesh levels, is shown in Figure 15, where it is compared with the convergence 
rate obtained on the coarser 300,000 point mesh, using five mesh levels. The fine grid case 
achieved a residual reduction of 4.5 orders of magnitude over 300 multigrid cycles, which 
results in an average residual reduction rate of 0.967. Furthermore, the convergence rate 
achieved by the fine grid is almost identical to that achieved on the coarser grid. This provides 
a good indication that the agglomeration multigrid strategy has achieved a near grid indepen- 
dent convergence rate for this case, especially given that the fine grid contains eight times as 
many points as the coarse grid. The fine grid case required a total of 425 Mwords of 
memory, and 18 hours of total CPU time for 300 multigrid cycles on a CRAY-C90.   This was 



performed in three restart runs of 100 multigrid cycles, each requiring approximately 6 hours 
of cpu time, but less than one hour of wall clock time, using all 16 processors, in a time shar- 
ing environment where 40% of the machine was available for this specific job. An average 
computational rate of 1.6 Gflops was reported during these runs by the CRAY hardware per- 
formance monitor. This suggests that the entire 300 cycle run could be performed in 1.2 hours 
at a speed of 4 Gflops in a dedicated environment on the CRAY-C90 using all 16 processors. 

6.  CONCLUSIONS 

The agglomeration multigrid strategy has been shown to be an effective means for 
accelerating convergence and reducing the cpu time required for large three-dimensional 
unstructured grid Navier-Stokes calculations, while incurring minimal additional memory over- 
heads. The agglomeration strategy delivers convergence rates similar to those obtained using 
the previously developed overset-mesh multigrid approach [13], but is fully automatic and can 
deal with meshes of arbitrary construction. 

The fact that the present method is comparable to the overset-mesh multigrid method in 
terms of convergence rates, lends support to the claim that the heuristics involved in deriving 
the coarse grid operator for the viscous terms are justified. Although better coarse grid opera- 
tors may be devised, we believe larger gains can be made by developing more sophisticated 
coarsening strategies. The degradation of multigrid convergence rates with increasing grid 
stretching for high-Reynolds number viscous flows is well known. The use of weighted-graph 
techniques to produce directional and adaptive coarsening strategies, which has only been 
invoked weakly in the present work, is currently under way [24], and will be investigated more 
thoroughly in future work. 
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Figure 1: Dual Mesh and Resulting Control Volume at a Mesh Vertex. 
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Figure 2:  Combination of Multiple Face Segments with Similar Neighboring Cells into a 
Single Face. 
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Figure 3: Unstructured Grid Employed For Viscous Flow over Rae 2822 Wing (1.04 million 
points, 6 million tetrahedra, wall spacing 10-5) 
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Figure 4: Computed Density Contours for Flow over Rae 2822 Wing 
(Mach = 0.73, Re = 6.5 million. Incidence = 2.79 degrees) 
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Figure 5: Comparison of Computed and Experimental Surface Pressure for Rae 2822 Wing 
(Mach = 0.73, Re = 6.5 million, Incidence = 2.79 degrees) 
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Figure 6: Agglomeration Multigrid Convergence Rate for Rae 2822 Wing Compared with 
3D Overset-Mesh. Multigrid Convergence Rate and 2D Overset Mesh Multigrid Code run 
on Equivalent 2D Problem 
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Figure 7:   Comparison of Agglomeration Multigrid Convergence Rate and Single Grid 
Convergence Rate for Flow over Rae 2822 Wing 
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Figure 8: Fine Unstructured Grid for Viscous Flow Over Wing-Slat-Flap Geometry 
(1.84 million points, 10.6 million tetrahedra, wall spacing: 10-6 chords) 
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Figure 9:   Computed Solution for the 3-Element Wing Test Case.   Mach contours are 
displayed on the symmetry plane, and density contours on the wing surface. 
(Mach = 0.2, Re = 9 million, Incidence = 16.21 degrees) 
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Figure 10:   Comparison of Computed and Experimental Surface Pressure for 3-Element 
Wing Case. (Mach = 0.2, Re = 9 million, Incidence = 16.21 degrees) 
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Figure 11: Comparison of Agglomeration Multigrid Convergence Rate with Overset-Mesh 
Multigrid Convergence Rate for 3-Element Wing Case 
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Figure 12: Initial Unstrucutred Grid, its Dual Mesh, and Four Agglomerated Coarse 
Mesh Levels Employed for the Multigrid Algorithm for the Partial-Span-Flap Wing in 
Wind-Tunnel Geometry (3000,000 points. 1.7million tetrahedra, wall spacing 10~5). 
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Figure 13: Fine Unstructured Mesh Employed for Viscous Flow Computation over Partial- 
Span-Flap Wing in Wind-Tunnel Geometry (2.3 million points, 13.6 million tetrahedra, wall 
spacing: 5 x 10-6) 
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Figure 14: Computed Solution for the 3-Element Wing Test Case. Mach contours are 
displayed on the wind-tunnel wall, density contours on the wing surface (Mach = 0.2, Re 
= 2 million, Incidence = 10.0 degrees) 
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Figure 15:  Agglomeration Multigrid Convergence Rates on Coarse (300,000 points) and 
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